skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Frankosky, Megan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A key untapped feature of game-based learning environments is their capacity to generate a rich stream of fine-grained learning interaction data. The learning behaviors captured in these data provide a wealth of information on student learning, which stealth assessment can utilize to unobtrusively draw inferences about student knowledge to provide tailored problem-solving support. In this paper, we present a long short-term memory network (LSTM)-based stealth assessment framework that takes as input an observed sequence of raw game-based learning environment interaction data along with external pre-learning measures to infer students’ post-competencies. The framework is evaluated using data collected from 191 middle school students interacting with a game-based learning environment for middle grade computational thinking. Results indicate that LSTM-based stealth assessors induced from student game-based learning interaction data outperform comparable models that required labor-intensive hand-engineering of input features. The findings suggest that the LSTM-based approach holds significant promise for evidence modeling in stealth assessment. 
    more » « less